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Summary 

Tortuosity is defined for a particular separator model and basic equa- 
tions are derived. 

The deficiencies of an averaged tortuosity derived from steady state 
measurements are discussed, particularly as applied to non-steady-state situa- 
tions. Two experimental procedures are outlined whereby more information 
can be obtained on the distribution of pore tortuosities in a given separator. 

The difficulties of applying the tortuosity concept to membranes with 
fixed charges are outlined. 

1. Introduction 

Tortuosity is an appropriate subject for a plenary lecture to open this 
Conference. Firstly, it is not possible to discuss the behaviour of separators 
and membranes in any depth without consideration of the effects of tortu- 
osity. Secondly, despite its obvious importance and apparent simplicity in 
concept, tortuosity is not well understood and the scant literature is often 
misleading. There is an unfortunate tendency to allocate to tortuosity all the 
differences in behaviour between the real separator or membrane and some 
model chosen for simplicity or mathematical tractability. Under these 
circumstances tortuosity is often only an adjustable parameter used to 
improve the fit between the predictions of the model and the real data and 
is appropriate only for the conditions at which the match was made. 

Much greater precision of thought is necessary if the concept of tortu- 
osity is to become an aid rather than a hindrance in the comprehension of 
separator and membrane behaviour. 

2. Model, definition of tortuosity and basic equations 

For the purpose of this lecture it is assumed that a separator can be 
represented as an assembly of conducting pores. The substance which 
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separates these pores, surrounds them, and, indeed, defines their shape and 
direction is ionically and electronically non-conducting. It is further assumed 
that the current flow in each pore is constant throughout its length and that 
the area of the pore normal to the direction of current flow is also constant 
throughout the length of the pore. While these latter assumptions are 
obviously oversimplifications they do lead to a very simple and convenient 
definition of tortuosity. 

The current carried by an individual pore, i,, is dependent upon the 
voltage drop across the separator, E, the specific conductivity of the electro- 
lyte contained in the pore, K, the area of the pore normal to current flow, 
A,, and the length of the pore. This latter dependence is the one of signifi- 
cance; the current is unaffected by the particular meanderings of the pore 
and is dependent only on total length. Thus, the currents carried by the 
pores shown in Fig. 1 are identical provided that their lengths and all other 
parameters mentioned above are identical. 

Fig. 1. Pores of identical tortuosity. 

The ratio of the length of a pore to the thickness, L, of the separator is 
defined as the tortuosity of the pore, 8,. In other words, the length of the 
pore is e,L. 

EKA, 

an= B,L 

The total current through all pores of tortuosity 8, is 

EKE, 
I, = - 

6,L 

(1) 

(2) 

where A, is the sum of the areas normal to current flow of all pores of equal 
tortuosity, 8,. Now the volume fraction of all pores of equal tortuosity On is 

&en 
V” = - 

A 
(3) 

where A is the geometric area of the separator. Combining eqns. (2) and (3) 

EKA V,, 
I,=-. 

Len2 
(4) 

Now summing over pores for all tortuosities, the total current, I, through the 
separator is obtained 
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I 

Substituting in eqn. (5) for the specific conductivity of the separator k (2 = 
IL/EA) the basic equation of this model is obtained 

If all the pores have identical tortuosity, eqn. (6) reduces to the simple 
expression, 

K V 
-=- 
K 82 

(7) 

where V is the volume fraction of pores and 8 is the tortuosity of all pores. 
Usually all pores do not have the same tortuosity but eqn. (7) is still 

used to derive a tortuosity from measured values of i and K. Under these 
circumstances the derived tortuosity is an “averaged” value which may be 
given the symbol 8. Thus 

1 
-= 1x 5. 
o2 v n en2 

An equation analogous to eqn. (6) may be derived for diffusion. Thus 

(9) 

3. Pareto distribution 

In order to use eqn. (6) information is needed on the distribution of 
tortuosities in a separator. It would be helpful mathematically if a continu- 
ous distribution could be assumed, and the Pareto distribution has been 
suggested [l J as a possible candidate. It is of the right form in that the 
Pareto distribution would allow 19~ to be continuously variable from unity to 
infinity. 8, equals unity for a pore normal, throughout its, length, to the 
separator surface and infinity for a pore of infinite length. 

In the present context the Pareto distribution may be written 

en 
_f 

V, de, = V(l - O,-‘=) (16) 
1 

where cx is a structure factor which is selected to match the character of a 
particular separator. As 8, no longer has discrete values but is continuously 



92 

1 2 3 4 5 6 7 .3 9 

Tortuosity, e 

Fig. 2. Pareto model, cumulative pore distributions. 

variable, the definition of V, must be changed slightly. V, is now the volume 
fraction of pores with tortuosities between 8, and 0,, + 60,. 

Figure 2 shows cumulative pore distributions, based on a Pareto model, 
for separators having averaged tortuosities (eqn. (8)) of 1.5, 2, 2.5 and 3. 
Clearly, the Pareto model represents a separator as having pores with a wide 
range of tortuosities. 

The Pareto model can be used to calculate the contribution pores of 
various tortuosities make to the total conductivity. This is shown in Fig. 3. 
Comparison of Figs. 2 and 3 illustrates dramatically the overriding impor- 
tance of the contribution of pores of low tortuosity to conductivity. For 
example, for averaged tortuosities of 1.5, 2.0, 2.5 and 3, 90% of the conduc- 
tivity is contributed by 64%, 45%, 32% and 23%, respectively, of the pore 
volume. 

4. Analysis of pore tortuosity 

Although the Pareto model has been used to illustrate the predominant 
contribution to conductivity of pores of low tortuosity, the effect is not 
dependent upon the assumption of such a model. 

Consider a hypothetical separator having a pore volume fraction of 0.6 
with half of this volume fraction consisting of pores of tortuosity 1.5 and 
the other half of pores of tortuosity 4. By eqn. (6) it is a simple matter to 
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Fig. 3. Pareto model, cumulative conductivity curves. 

calculate that the pores of tortuosity 4 contribute only 12% to the overall 
conductivity even though they occupy half of the pore volume. If this half 
had also a tortuosity of 1.5, conductivity would be increased by 75%. Such 
potential improvements are not usually recognised, however, because only an 
averaged tortuosity is obtained from steady state measurements. For the 
hypothetical separator now being considered, the averaged tortuosity calcu- 
lated using eqn. (8) is 2. 

Steady state measurements cannot distinguish between a separator in 
which all the pores have a tortuosity of 2 and one in which half the pore 
volume has a tortuosity of 1.5 and the other half a tortuosity of 4.0. The 
separator manufacturer is thus unaware in the latter case that half of the 
pore volume is contributing little to conductivity and that a substantial 
improvement in conductivity is possible if he could make changes to convert 
all the pore volume into a tortuosity of 1.5. What is needed is a means of 
recognising the presence in a separator of pores of high tortuosity. 

A method, diffusion ingress, is available in principle, although it does 
not appear to have been tried. The experimental procedure is very simple. 
Pieces of separator full of water are immersed in a well stirred solution of 
excess electrolyte of known concentration. After various times pieces are 
removed and the amount of electrolyte that has diffused in is determined. 
The experiment yields the amount diffused in, M,, after time t as a fraction 
of the amount diffused in after infinite time, M,. 
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The equations governing this behaviour [ 21 are easily modified for the 
present situation. Thus 

8 D(2m + 1)2~2t 

(2m +1)2n2 exp Bn2L2 
(11) 

where D is the diffusion coefficient for the electrolyte. Numerical data 
appropriate to eqn. (11) are available in ref. 2 (Fig. 4.6, curve labelled 0). 
These data have been used to compare the diffusion ingress curves for a 
separator with pores of a single tortuosity, 2 (separator A), with one which 
has an averaged tortuosity of 2 but actually consists of equal pore volumes 
of tortuosities 1.5 and 4.0 (separator B). The comparison is shown in Fig. 4. 
The presence of pores of high tortuosity in separator B is clearly revealed by 
the continuing diffusion ingress at long times. Thus, non-steady-state experi- 
ments of this type can distinguish between separators of identical averaged 
tortuosity but with different distributions of pore tortuosity. 

The spectrum of pore tortuosities present in a separator is probably 
continuous. By making an arbitrary choice of discrete tortuosities, however, 
it is possible to analyse a diffusion ingress curve in terms of the assumed 
tortuosities. For the purpose of illustration it has been assumed that both 

Fig. 4. Diffusion ingress. Separator A, all pores have tortuosity 2; separator B, averaged 
tortuosity 2, pore volume equally divided between pores of tortuosity 1.5 and 4.0. 
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steady state and non-steady-state behaviour of a real separator may be 
represented by a hypothetical separator consisting of various volume 
fractions of the following tortuosities: 1.0, 1.4, 2.0, 2.8, 4.0 and 5.6. The 
principle of the analysis is then to choose the various volume fractions so 
that the theoretical diffusion ingress curve for the hypothetical separator 
closely matches the experimental curve for the real separator. 

Figure 5 shows the theoretical diffusion ingress curves for hypothetical 
separators having all their pores with a single tortuosity of 1.0,1.4, 2.0, 2.8, 
4.0 or 5.6. A possible procedure is then as follows: the experimental diffu- 
sion ingress curve for the real separator is examined to determine the 
increase in Mt/MW between of/L values of 2.1 and 3.0. 

Let this be 

Figure 5 is examined to determine the theoretical increase in Mt/Mco for a 
separator in which all the pores have a tortuosity of 5.6. 

8= 5.6 

Let this be 

Fig. 5. Diffusion ingress with pores of a single tortuosity. 
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exP 

[ 1 *M, 
Then 

Mm JD?IL.2.1/3.0 v,., 
=- 

.9=5.6 M 

[ I 
A ML 

V 

m &%/L,2.1/3.0 

where V5.6 is the deduced volume fraction of pores with tortuosity 5.6. 
A second experimental curve is then derived by subtracting from the 

original experimental curve the contribution due to the pores of tortuosity 
5.6. This is done by multiplying the ordinates for the theoretical curve for a 
tortuosity of 5.6 shown in Fig. 5 by V.&V and subtracting the results from 
the ordinates of the original experimental diffusion ingress curve. 

V,_,/V is then derived similarly by comparing the increase in M,/M, 
between a/L values of 1.5 and 2.1 for the second experimental curve with 
the theoretical curve for a tortuosity of 4. 

The contribution of pores of tortuosity 4 is then removed from the 
second experimental curve and the increase in MJM, examined between 
a/L values of 1.05 and 1.5 to find the volume fraction of pores of tortu- 
osity 2.8 and so on. 

The choice of m/L values is determined by the requirement that 
diffusion ingress of the next lower tortuosity class shall be 95% complete at 
the lower m/L value, and for the tortuosity class under examination shall 
be 95% complete at the higher m/L value. This leads to the m/L values 
shown in Table 1. 

The highest tortuosity class can, of course, be examined up to a/L 
values of infinity and the lowest down to m/L equals zero. 

The volume fractions so derived can, of course, be given some final 
adjustment so that: 

(i) their use in eqn. (11) gives a theoretical diffusion ingress which 
matches the experimental result as closely as possible, 

. . 
(11) VS., + V4.O + V2.8 + v2.0 + VI.4 + VI.0 = v 

and 
(iii) V,., V 4.0 V2.8 v2.0 v 1.4 Vl.0 v --_+-++++++++=~ 

5.62 4.02 2.8’ 2.02 1.42 l2 19~ 

where 0 is the averaged tortuosity determined by a steady state method. 
While the diffusion ingress method should be satisfactory for deter- 

mining the volume fractions of pores of high tortuosity, thus highlighting 
scope for separator improvement, it is open to criticism on the grounds that 
the volume fractions of pores of low tortuosity, and these are the ones which 
control steady state behaviour, are only obtained after a succession of 
computations and therefore may be in error. Fortunately there is a com- 
plementary experiment in which the volume fractions are determined in the 
opposite order (i.e., the volume fractions of the lower tortuosity pores are 
determined first). 

The experiment which may be called diffusion breakthrough is a little 
more difficult experimentally. The separator is initially filled with water and 
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TABLE 1 

Diffusion ingress method 

Tortuosity class Examine between J?%IL 
values of 

5.6 2.1 , 3.0 
4.0 1.5 ) 2.1 
2.8 1.05 , 1.5 
2.0 0.75 , 1.05 
1.4 0.53 ,0.75 
1.0 0.38 , 0.53 

the solutions on either side of it are kept at zero concentration and at a pre- 
determined level. The flux of electrolyte Jt through the separator and into 
the solution of zero concentration, expressed as a fraction of the steady state 
diffusion flux J, , is measured as a function of time. The equations governing 
this behaviour are readily deduced from the literature [ 31. 

Jt V,P -- = 
J, 

c- 
n V~n2 [ 

1+2 2 (-l)mexp - 
??Z=1 ( Ds)]* (12) 

Figure 6 compares the diffusion breakthrough curves for a separator 
with pores of a single tortuosity 2 (separator A) with one which has an 

0.6- 

Fig. 6. Diffusion breakthrough. Separator A, all pores have tortuosity 2; separator B, aver- 
aged tortuosity 2, pore volume equally divided between pores of tortuosity 1.5 and 4.0. 
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Fig. 7. Diffusion breakthrough with pores of a single tortuosity. 

averaged tortuosity of 2 but actually consists of equal pore volumes of 
tortuosities 1.5 and 4 (separator B). There is a clear distinction between 
them. 

Figure 7 shows the theoretical diffusion breakthrough curves for hypo- 
thetical separators each having pores of only a single tortuosity of 1.0,1.4, 
2.0, 2.8, 4.0 or 5.6. In a similar manner to the procedure already described 
for diffusion ingress, an experimental diffusion breakthrough curve can be 
analysed on the basis of the theoretical curves given in Fig. 7. In this case the 
volume fraction of pores of tortuosity 1.0 is first determined by comparing 
the value of Jt/Jm at the Dt/L’ value of 0.11 for the experimental curve with 
the theoretical value given in Fig. 7. The contribution of the derived volume 
fraction of pores of tortuosity 1.0 is then eliminated from the experimental 
diffusion breakthrough curve and the volume fraction of pores of tortuosity 
1.4 next derived by comparison of Jt/Jm at the Dt/L* value of 0.22 with the 
appropriate theoretical curve. 

The choice of Dt/L2 values shown in Table 2 is based on the require- 
ment that diffusion breakthrough of the next higher tortuosity class shall be 
only 5% of its maximum value. 

5. Battery implications 

Separator tortuosities are almost always determined by steady state 
methods. From the foregoing it is clear that averaged tortuosities derived in 
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TABLE 2 

Diffusion breakthrough method 

Tortuosity class Examine at Dt/LZ 
values of 

1.0 0.11 
1.4 0.22 
2.0 0.44 
2.8 0.88 
4.0 1.76 
5.6 3.52 

this way may not be useful in predicting or understanding separator behav- 
iour in non-steady state conditions. Thus two separators may behave 
identically on an electrical resistance test but show quite different perfor- 
mances on engine starting. For a better comprehension of non-steady-state 
behaviour, analysis of the separator in terms of pores of various tortuosities 
is necessary. 

Lest it be thought that batteries are rarely used in non-steady-state con- 
ditions a few civilian examples follow. 

Engine starting - 

Electronic camera controls - 
Electronic photoflash - 
Cassette recorders - 

Fast charging - 

Smoke alarms - 

lead-acid and nickel-cadmium batteries 
silver and mercury button cells 
alkaline manganese batteries 
LeclanchC and alkaline manganese 
batteries 
nickel-cadmium batteries 
alkaline manganese batteries. 

6. Membranes 

The discussion so far has been concerned with separators in which the 
electrolyte contained in the pores is identical with the external solution. The 
separator substance behaves only as an obstacle. It influences the shape and 
direction of the pores but not the nature of the electrolyte contained within 
them. Under these circumstances it is a simple matter to determine an aver- 
aged tortuosity from steady state measurements by means of eqns. (8) and 
(6) or (9). Such tortuosities are useful in steady state situations because they 
apply to both diffusion and conductivity and to any electrolyte at any 
concentration. In other words to situations other than those in which they 
were derived. 

There is, however, frequent use made in the literature of the same 
equations to derive a so-called tortuosity for membranes which contain 
internal fixed charge groups. Internal fixed charge groups cause the con- 
centrations of ions in the membrane to differ from those in the external 
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solution. If the concentration of cations is enhanced relative to the external 
solution, the concentration of anions is diminished and vice versa. The 
nature of the electrolyte, l:l, 1:2, 2:1, 2:2, is important, as is its concentra- 
tion. The relationship between diffusion and conductance is complex, e.g., 
in dilute external solutions a membrane may permit ionic conduction while 
preventing diffusion. The internal volume fraction probably varies with the 
nature and concentration of the external electrolyte. 

Because of the above circumstances, a tortuosity determined from con- 
ductance measurements made with and without a membrane has no physical 
reality and is of little use in predicting behaviour in situations different from 
those in which it was determined. 

The starting point for understanding membrane behaviour must be a 
knowledge of the concentrations of mobile ions in the membrane. Even this, 
however, is only partially helpful, as their mobilities are, in general, not pre- 
dictable from mobilities in the external solution. This is because the fixed 
charge groups polarise the membrane medium such that the centre of gravity 
of the counter-ions is closer to the fixed charge groups than the centre of 
gravity of the co-ions. 

In such a complex situation it would be useful to have an independent 
measurement of tortuosity. This can be attempted with a species that is less 
affected by the membrane structure than ions. A possible choice is water. 
By use of isotopic species, self diffusion coefficients can be determined in 
the membrane and compared with external solution to determine an aver- 
aged tortuosity. This has been done only rarely and, even so, is not without 
criticism, as the self-diffusion coefficient depends upon the viscosity of the 
medium. The implicit and probably incorrect assumption is that the 
membrane structure does not affect viscosity. Since viscosity inside the 
membrane will be difficult if not impossible to assess, however, it may be 
convenient for membranes to use a tortuosity which combines the viscosity 
change with the obstacle effect caused by the membrane. 
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